A cognitive evaluation procedure for contour based shape descriptors
نویسندگان
چکیده
Present image processing algorithms are unable to extract a neat and closed contour of an object of interest from a natural image. Advanced contour detection algorithms extract the contour of an object of interest from a natural scene with a side effect of depletion of the contour. Hence in order to perform well in a real world scenario, object recognition algorithms should be robust to contour incompleteness. With inspiration from psychophysical studies of the human cognitive abilities we propose a novel method to evaluate the performance of object recognition algorithms in terms of their robustness to incomplete contour representations. Complete contour representations of objects are used as a reference (training) set. Incomplete contour representations of the same objects are used as a test set. The performance of an algorithm is evaluated using the recognition rate as a function of the percentage of contour retained. The test framework is illustrated by using two contour based shape recognition algorithms which use a shape context and a distance multiset as shape descriptors. Three types of contour incompleteness, viz. segment-wise contour deletion, occlusion and random pixel depletion, are considered. In our experiments we use images from the COIL and MPEG-7 datasets. Both algorithms qualitatively perform similar to the human visual system in the sense that recognition performance monotonously increases with the degree of completeness and that they perform best in the case of random depletion and worst in the case of occluded contours. The distance multiset shape descriptor outperforms the shape context in this test especially for high levels of incompleteness.
منابع مشابه
Incomplete Contour Representations and Shape Descriptors: ICR Test Studies
Inspired by psychophysical studies of the human cognitive abilities we propose a novel aspect and a method for performance evaluation of contour based shape recognition algorithms regarding their robustness to incompleteness of contours. We use complete contour representations of objects as a reference (training) set. Incomplete contour representations of the same objects are used as a test set...
متن کاملبازیابی مبتنی بر شکل اجسام با توصیفگرهای بدست آمده از فرآیند رشد کانتوری
In this paper, a novel shape descriptor for shape-based object retrieval is proposed. A growing process is introduced in which a contour is reconstructed from the bounding circle of the shape. In this growing process, circle points move toward the shape in normal direction until they get to the shape contour. Three different shape descriptors are extracted from this process: the first descript...
متن کاملRobustness of Shape Descriptors and Dynamics of Learning Vector Quantization
With inspiration from psychophysical researches of the human visual system we propose a novel aspect and a method for performance evaluation of contour based shape recognition algorithms regarding their robustness to incompleteness of contours. We use complete contour representations of objects as a reference (training) set. Incomplete contour representations of the same objects are used as a t...
متن کاملFish Shape Recognition using Multiple Shape Descriptors
This paper studies recognition of fish shapes using both Region based and Contour based shape based descriptors[9]. Moment Invariants are chosen as the Region based descriptor and the Simple (geometric) shape descriptors (SSD) are used as Contour based shape descriptors. The shapes are varied through scaling and rotation. Manhattan Distance is used as the classifier. The study of the recognitio...
متن کاملA Review on Shape based Descriptors for Image Retrieval
In the age of information technology, a large number of images are generated at 24/7 which leads to a growing interest for searching out similar images from the large databases/ data warehouses. For searching an image from the database, images need to be described by certain features. The most important feature to describe an image is its shape. Now-adays, shape is used for image retrieval. Des...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Hybrid Intell. Syst.
دوره 2 شماره
صفحات -
تاریخ انتشار 2005